Ch16 – Aqueous Ionic Equilibrium Solubility and Complex Ion Equilibria

Lead (II) iodide precipitates when potassium iodide is mixed with lead (II) nitrate

Modified Dr. Cheng-Yu Lai

Solubility-product constant K_{sp}

The Equilibrium Constant for the equilibrium established between a solid solute and its ion in a saturated solutiion.

 $BaSO_4$ (s) $\rightarrow Ba^{2+}$ (aq) + SO_4^{2-} (aq)

 When writing the equilibrium constant expression for the dissolution of BaSO₄, we remember that the concentration of a solid is constant.

The equilibrium expression is therefore:

 $K = [Ba^{2+}][SO_4^{2-}]/[BaSO_4(s)]$

since *the concentration of a solid is constant*, we could get new K'= k x[BaSO₄(s)]= Ksp

the solubility-product constant.

Ksp = [Ba²⁺][SO₄²⁻] Ksp, the solubility-product constant.

The Solubility Expression

$A_aB_b(s) \leftrightarrow aA^{b+}(aq) + bB^{a-}(aq)$

$$Ksp = [A^{b+}]^{a} [B^{a-}]^{b}$$

Example:
$$PbI_2(s) \leftarrow \rightarrow Pb^{2+} + 2I^{-}$$

Ksp = $[Pb^{2+}][I^{-}]^2$

The greater the ksp the more soluble the solid is in H₂O.

The Solubility Equilibrium Equation And K_{sp}

CaF₂ (s)
$$\Leftrightarrow$$
 Ca²⁺ (aq) + 2 F⁻ (aq)
K_{sp} = [Ca²⁺][F⁻]² K_{sp} = 5.3x10⁻⁹

$$As_{2}S_{3}(s) \Leftrightarrow 2As^{3+}(aq) + 3S^{2-}(aq)$$

 $K_{sp} = [As^{3+}]^{2}[S^{2-}]^{3}$

* Remember, solids are not in equilibrium expressions!

K_{sp} Values for Some Salts at $25^{\circ}C$

Name	Formula	K _{sp}
Barium carbonate	BaCO ₃	2.6 x 10 ⁻⁹
Barium chromate	BaCrO ₄	1.2 x 10 ⁻¹⁰
Barium sulfate	BaSO ₄	1.1 x 10 ⁻¹⁰
Calcium carbonate	CaCO ₃	5.0 x 10 ⁻⁹
Calcium oxalate	CaC ₂ O ₄	2.3 x 10 ⁻⁹
Calcium sulfate	CaSO₄	7.1 x 10⁻⁵
Copper(I) iodide	CuI	1.3 x 10 ⁻¹²
Copper(II) iodate	Cu(IO ₃) ₂	6.9 x 10 ⁻⁸
Copper(II) sulfide	CuS	6.0 x 10 ⁻³⁷
Iron(II) hydroxide	Fe(OH) ₂	4.9 x 10 ⁻¹⁷
Iron(II) sulfide	FeS	6.0 x 10 ⁻¹⁹
Iron(III) hydroxide	Fe(OH) ₃	2.6 x 10 ⁻³⁹
Lead(II) bromide	PbBr ₂	6.6 x 10⁻ ⁶
Lead(II) chloride	PbCl ₂	1.2 x 10⁻⁵
Lead(II) iodate	Pb(IO ₃) ₂	3.7 x 10 ⁻¹³
Lead(II) iodide	PbI ₂	8.5 x 10 ⁻⁹
Lead(II) sulfate	PbSO ₄	1.8 x 10 ⁻⁸

Name	Formula	K _{sp}
Lead(II) bromide	PbBr ₂	6.6 x 10 ⁻⁶
Lead(II) chloride	PbCl ₂	1.2 x 10⁻⁵
Lead(II) iodate	Pb(IO ₃) ₂	3.7 x 10 ⁻¹³
Lead(II) iodide	PbI ₂	8.5 x 10 ⁻⁹
Lead(II) sulfate	PbSO ₄	1.8 x 10 ⁻⁸
Magnesium carbonate	MgCO ₃	6.8 x 10 ⁻⁶
Magnesium hydroxide	Mg(OH) ₂	5.6 x 10 ⁻¹²
Silver bromate	AgBrO ₃	5.3 x 10⁻⁵
Silver bromide	AgBr	5.4 x 10 ⁻¹³
Silver carbonate	Ag ₂ CO ₃	8.5 x 10 ⁻¹²
Silver chloride	AgCl	1.8 x 10 ⁻¹⁰
Silver chromate	Ag ₂ CrO ₄	1.1 x 10 ⁻¹²
Silver iodate	AgIO ₃	3.2 x 10 ⁻⁸
Silver iodide	AgI	8.5 x 10 ⁻¹⁷
Strontium carbonate	SrCO ₃	5.6 x 10 ⁻¹⁰
Strontium fluoride	SrF ₂	4.3 x 10 ⁻⁹
Strontium sulfate	SrSO ₄	3.4 x 10 ⁻⁷
Zinc sulfide	ZnS	2.0 x 10 ⁻²⁵

Solubility and Ksp Three important definitions:

- 1) solubility: quantity of a substance that dissolves to form a saturated solution
- molar solubility: the number of moles of the solute that dissolves to form a liter of saturated solution
- Ksp (solubility product): the equilibrium constant for the equilibrium between an ionic solid and its saturated solution

Example 16.9 Calculating K_{sp} from Molar Solubility

The molar solubility of Ag₂SO₄ in pure water is 1.2 \times 10⁻⁵ M. Calculate K_{sn}.

Solution

Begin by writing the reaction by which solid Ag_2SO_4 dissolves into its constituent aqueous ions, then write the corresponding expression for $K_{\rm sp}$.

$$Ag_2SO_4(s) \Longrightarrow 2 Ag^+(aq) + SO_4^{2-}(aq)$$
$$K_{sp} = [Ag^+]^2[SO_4^{2-}]$$

Use an ICE table to define $[Ag^+]$ and $[SO_4^{2-}]$ in terms of *S*, the amount of Ag_2SO_4 that dissolves.

	[Ag ⁺]	[S0 4 ²⁻]
Initial	0.00	0.00
Change	+2S	+S
Equil	25	S

 $Ag_2SO_4(s) \Longrightarrow 2 Ag^+(aq) + SO_4^{2-}(aq)$

Substitute the expressions for $[Ag^+]$ and $[SO_4^{2-}]$ from the previous step into the expression for K_{sp} . Substitute the given value of the molar solubility for S and calculate K_{sp} .

$$K_{sp} = [Ag^+]^2 [SO_4^{2-}]$$

= (2S)²S
= 4S³
= 4(1.2 × 10⁻⁵)³
= 6.9 × 10⁻¹⁵

The **Molar Solubility** is the **molarity** required to **saturate** of fill the solution at any given temperature.

1. The solubility (s) of $BaCO_3$ is 5.1 x 10⁻⁵ M @ 25⁰ C. Calculate the solubility product or Ksp.

Ask for solubility to Ksp

 $BaCO_{3(s)} \Rightarrow Ba^{2+} + CO_3^{2-}$ S S S Ksp = $[Ba^{2+}][CO_3^{2-}]$ Ksp = [s][s] $Ksp = s^2$ $Ksp = (5.1 \times 10^{-5})^2$ Ksp = 2.6×10^{-9}

Calculating Molar Solubility Calculate the molar solubility of Ag_2SO_4 in one liter of water. Ksp = 1.4×10^{-5} $Ag_2SO_4 \leftrightarrow 2Ag^+ + SO_4^{2-}$ Initial () Change +2x+XEquilb 2x Χ

Ksp = $[Ag^{+}]^{2}[SO_{4}^{2}] = (2x)^{2}(x) = 1.4 \times 10^{-5}$ X = 1.5 x 10⁻² mol Ag₂SO₄ /L (molar solubility)

EXAMPLE 15.5

Consider the pesticide magn H_2O . What is the K_{sp} for Mg	esium arsenate, Mg ₃ (AsO ₄) ₂ . Its solubility is determined experimentally to be 1.6×10^{-3} g/100 g ₃ (AsO ₄) ₂ ? (Assume that the density of water is equal to the density of the solution.)
	ANALYSIS
Information given:	solubility (1.6 \times 10 ⁻³ g/100 g H ₂ O)
Information implied:	density of the solution = density of water MM $Mg_3(AsO_4)_2$
Asked for:	K_{sp}
	STRATEGY
 Assume 1.6 × 10⁻³ g/100 g (mol/L). Use the molar m Write a net ionic equation Use stoichiometric ratios Substitute into the K_{sp} exp 	g H ₂ O = 1.6×10^{-3} g/100 mL of solution. Convert this solubility data to molar solubility hass of Mg ₃ (AsO ₄) ₂ . In to represent dissolving Mg ₃ (AsO ₄) ₂ . to relate [Mg ₃ (AsO ₄) ₂] to [Mg ²⁺] and [AsO ₄ ³⁻]. pression and find K _{sp} .
	SOLUTION
1. Molar solubility	$\frac{1.6 \times 10^{-3} \mathrm{g}}{0.100 \mathrm{L}} \times \frac{1 \mathrm{mol}}{350.7 \mathrm{g}} = 4.6 \times 10^{-5} M$
2. Reaction	$Mg_3(AsO_4)_2(s) \Longrightarrow 3Mg^{2+}(aq) + 2AsO_4^{3-}(aq)$
 Stoichiometric ratios 	1 mol Mg ₃ (AsO ₄) ₂ dissolved \longrightarrow 3 mol Mg ²⁺ ; [Mg ²⁺] = 3(4.6 × 10 ⁻⁵) = 1.4 × 10 ⁻⁴ 1 mol Mg ₃ (AsO ₄) ₂ dissolved \longrightarrow 2 mol AsO ₄ ³⁻ ; [AsO ₄ ³⁻] = 2(4.6 × 10 ⁻⁵) = 9.2 × 10 ⁻⁵
4. K _{sp}	$K_{\rm sp} = [Mg^{2+}]^3 [AsO_4^{3-}]^2 = (1.4 \times 10^{-4})^3 (9.2 \times 10^{-5})^2 = 2.3 \times 10^{-20}$

The Common-Ion Effect and Le Châteliers Principle

Common ion effect: "The solubility of one salt is reduced by the presence of another having a common ion"

Common ion Effect

<u>Common ion</u>: "The ion in a mixture of ionic substances that is common to the formulas of at least two." (Pbl₂+ Nal)

 $Pbl_2(s) \leftrightarrow Pb^{2+}(aq) + 2l^{-}(aq)$

Ksp of PbI₂ = 7.9 x 10⁻⁹, so the molar solubility is 7.9 x 10⁻⁹ = (x)(2x)² = $4x^3$ X = 1.3 x 10⁻³

Thus the solubility of the PbI₂ is reduced by the presence of the NaI.

Which is much greater than 7.9 x 10^{-7} when 0.10 M Nal is in solution (solubility becomes = 7.9×10^{-7} M)

pH and Solubility

- The presence of a common ion decreases the solubility.
- Insoluble bases dissolve in acidic solutions
- Insoluble acids dissolve in basic solutions

$$Mg(OH)_2$$
 (s) \longrightarrow $Mg^{2+}(aq) + 2OH^-(aq)$

$$K_{sp} = [Mg^{2+}][OH^{-}]^{2} = 1.2 \times 10^{-11}$$
At pH less than 10.45 $K_{sp} = (s)(2s)^{2} = 4s^{3}$ Lower [OH^{-}] $4s^{3} = 1.2 \times 10^{-11}$ $OH^{-} (aq) + H^{+} (aq) \longrightarrow H_{2}O (l)$ $s = 1.4 \times 10^{-4} M$ Increase solubility of Mg(OH)₂ $OH^{-}] = 2s = 2.8 \times 10^{-4} M$ At pH greater than 10.45 $pOH = 3.55 pH = 10.45$ Raise [OH^{-}]Decrease solubility of Mg(OH)₂

Determining Whether Precipitation Occurs

- Q_{sp} is the ion product reaction quotient and is based on initial conditions of the reaction.
- $Q_{\rm sp}$ can then be compared to $K_{\rm sp}$.
- To predict if a precipitation occurs:
 - Precipitation should occur if $Q_{sp} > K_{sp}$.
 - Precipitation *cannot* occur if $Q_{sp} < K_{sp}$.
 - A solution is *just saturated* if $Q_{sp} = K_{sp}$.

Sometimes the concentrations of the ions are not high enough to produce a precipitate!

EXAMPLE 15.10

Write balanced equations to explain why each of the following precipitates dissolves in strong acid.

(a) Al(OH)₃ (b) CaCO₃ (c) CoS

SOLUTION

- (a) $Al(OH)_3(s) + 3H^+(aq) \longrightarrow Al^{3+}(aq) + 3H_2O$
- (b) $CaCO_3(s) + 2H^+(aq) \longrightarrow Ca^{2+}(aq) + H_2CO_3(aq)$
- (c) $CoS(s) + 2H^+(aq) \longrightarrow Co^{2+}(aq) + H_2S(aq)$

Group 1 Cation Precipitates – lab exp 1st analytical group of cations consists of ions that form insoluble chlorides. $Solution of Ag^{*}, Hg_{2}^{2*}, Pb^{2*}$

TABLE 16.5

Separation of Cations into Groups According to Their Precipitation Reactions with Various Reagents

Group	Cation	Precipitating Reagents	Insoluble Compound	K _{sp}
1	Ag ⁺	HCl	AgCl	1.6×10^{-10}
	Hg_{2}^{2+}		Hg ₂ Cl ₂	3.5×10^{-18}
	Pb^{2+}	Į	PbCl ₂	2.4×10^{-4}
2	Bi ³⁺	H ₂ S	Bi ₂ S ₃	1.6×10^{-72}
	Cd ²⁺	in acidic	CdS	8.0×10^{-28}
	Cu ²⁺	solutions	CuS	6.0×10^{-37}
	Hg ²⁺	1	HgS	4.0×10^{-54}
	Sn ²⁺	Į	SnS	1.0×10^{-26}
3	Al^{3+}	H ₂ S	Al(OH) ₃	1.8×10^{-33}
	Co ²⁺	in basic	CoS	4.0×10^{-21}
	Cr ³⁺	solutions	Cr(OH) ₃	3.0×10^{-29}
	Fe ²⁺		FeS	6.0×10^{-19}
	Mn^{2+}		MnS	3.0×10^{-14}
	Ni ²⁺		NiS	1.4×10^{-24}
	Zn ²⁺		ZnS	3.0×10^{-23}
4	Ba ²⁺	Na ₂ CO ₃	BaCO ₃	8.1×10^{-9}
	Ca ²⁺		CaCO ₃	8.7×10^{-9}
	Sr ²⁺		SrCO ₃	1.6×10^{-9}
5	K ⁺	No precipitating	None	
	Na ⁺	reagent	None	
	NH_4^+		None	

Example -Will a Precipitation Occur?

If 1.00 mg of Na₂CrO₄ is added to 225 ml of 0.00015 M AgNO₃, will a precipitate form? Ag₂CrO₄ (s) \rightarrow 2Ag⁺ + CrO₄²⁻

Determine the initial concentration of ions.

 $Ag^{+} = 1.5 \times 10^{-4} M$

 $CrO_4^{2-} = 1.00 \times 10^{-3} \text{ g} / \text{MM} = 6.17 \times 10^{-6} \text{ mol } CrO_4^{2-} / .225 \text{ L} = 2.74 \times 10^{-5} \text{ M}$

Example -Will a Precipitation Occur?

- Compare the initial concentration to the solubility product constant
- Initial concentration of ions: (Ag⁺)² (CrO₄²⁻)

 $(1.5 \times 10^{-4})^2 (2.74 \times 10^{-5} \text{ M}) = 6.2 \times 10^{-13}$ Ag₂CrO₄ Ksp = 1.1×10^{-12}

• No precipitation will occur because the initial concentration is less than the Ksp.

Q < Ksp

Complex Ions

A *Complex ion* is a charged species composed of:

1. <u>A metallic cation</u>

2. <u>Ligands</u> – Lewis bases that have a lone electron pair that can form a covalent bond with an empty orbital belonging to the metallic cation

 NH_3 , CN^- , and H_2O are Common Ligands

Coordination Number

Coordination number refers to the number of ligands attached to the cation

2, 4, and 6 are the most common coordination numbers

Coordination	Example(s)		
number			
2	Ag(NH ₃) ₂ +		
4	$CoCl_4^{2-}$ $Cu(NH_3)_4^{2+}$		
6	$C_0(H_2O)_6^{2+}$ Ni(NH ₃) ₆ ²⁺		

Complex Ions and Solubility $AgCl(s) \leftrightarrows Ag^+ + Cl^ K_{so} = 1.6 \times 10^{-10}$ $K_1 = 2.1 \times 10^3$ $Ag^{+} + NH_{3} \leftrightarrows Ag(NH_{3})^{+}$ $Ag(NH_3)^+ NH_3 \leftrightarrows Ag(NH_3)_2^+$ $K_2 = 8.2 \times 10^3$ $AgCl + 2NH_3 \leftrightarrows Ag(NH_3)_2^+ + Cl^ \mathbf{K} = \mathbf{K}_{sp} \cdot \mathbf{K}_1 \cdot \mathbf{K}_2$ $K = 2.8 x 10^{-3} = \frac{[Ag(NH_3)_2^+][Cl^-]}{[Cl^-]}$ $[NH_3]^2$ = formation constant

Formation Constants

TABLE 16.3 Formation Constants of Selected Complex Ions in Water at 25 °C				
Complex Ion	K _f	Complex Ion	Kf	
Ag(CN) ₂ ⁻	1×10^{21}	$Cu(NH_3)_4^{2+}$	$1.7 imes 10^{13}$	
$Ag(NH_3)_2^+$	1.7×10^7	$Fe(CN)_6^{4-}$	$1.5 imes10^{35}$	
$Ag(S_2O_3)_2^{3-}$	$2.8 imes 10^{13}$	$Fe(CN)_6^{3-}$	$2 imes 10^{43}$	
AIF ₆ ³⁻	7×10^{19}	$Hg(CN)_4^{2-}$	$1.8 imes 10^{41}$	
AI(OH) ₄	3×10^{33}	HgCl ₄ ²⁻	$1.1 imes 10^{16}$	
CdBr ₄ ²⁻	5.5×10^3	Hgl4 ²⁻	$2 imes 10^{30}$	
Cdl_4^{2-}	2×10^{6}	Ni(NH ₃) ₆ ²⁺	$2.0 imes 10^8$	
$Cd(CN)_4^{2-}$	3×10^{18}	$Pb(OH)_3^-$	$8 imes 10^{13}$	
$Co(NH_3)_6^{3+}$	2.3×10^{33}	$Sn(OH)_3^-$	$3 imes 10^{25}$	
Co(OH) ₄ ²⁻	$5 imes 10^9$	$Zn(CN)_4^{2-}$	$2.1 imes 10^{19}$	
$Co(SCN)_4^{2-}$	1×10^3	$Zn(NH_3)_4^{2+}$	$2.8 imes10^9$	
Cr(OH) ₄	8.0×10^{29}	$Zn(OH)_4^{2-}$	$2 imes 10^{15}$	
Cu(CN) ₄ ²⁻	1.0×10^{25}			

Formation Constants for Complex Ions

• The very soluble silver complex ion removes Ag+ from the solution and shifts the equilibrium to the right increasing the solubility of AgCl.

$$AgBr + 2NH_{3} \iff Ag(NH_{3})^{2+} + Br^{-1}$$

$$K = 8.0 \times 10^{-6} \iff = [Ag(NH_{3})^{2+}][Br^{-1}]$$

$$[NH_{3}]$$

$$K = k_{form} \times k_{sp} = (1.6 \times 10^7)(5.0 \times 10^{-13})$$
$$= 8.0 \times 10^{-6}$$

Example

 How many moles of AgBr can dissolve in 1 L of 1.0 M NH₃?

AgBr +	+ 2NH ₃ ⇔ A	$(NH_3)^{2+}$	+ Br -			
	1.0	0		0		
_	-2x	+x		+X	_	
_	1.0-2xx		X		_	
Kc =	X ²					
(1.0-2x) ² =	8.0x10 ⁻⁶				
X = 2.8	3x10 ⁻³ , 2.8 x	10 ⁻³ mol c	of AgBi	r <mark>di</mark> sso	lves ir	າ 1L of
NH_3						

Example 16.15 Complex Ion Equilibria

You mix a 200.0 mL sample of a solution that is 1.5×10^{-3} M in Cu(NO₃)₂ with a 250.0 mL sample of a solution that is 0.20 M in NH₃. After the solution reaches equilibrium, what concentration of Cu²⁺(*aq*) remains?

Solution

Write the balanced equation for the complex ion equilibrium that occurs and look up the value of K_f in Table 16.3. Since this is an equilibrium problem, you have to create an ICE table, which requires the initial concentrations of Cu²⁺ and NH₃. Calculate those concentrations from the given values.

TABLE 16.3 Formation Constants of Selected Complex Ions in Water at 25 °C				
Complex Ion	K _f	Complex Ion	K _f	
Ag(CN) ₂ ⁻	$1 imes 10^{21}$	$Cu(NH_3)_4^{2+}$	1.7×10^{13}	
$Ag(NH_3)_2^+$	$1.7 imes 10^7$	$\operatorname{Fe(CN)_6}^{4-}$	$1.5 imes10^{35}$	
Ag(S ₂ O ₃) ₂ ³⁻	$2.8 imes10^{13}$	$Fe(CN)_6^{3-}$	2×10^{43}	
AIF ₆ ³⁻	$7 imes 10^{19}$	$Hg(CN)_4^{2-}$	$1.8 imes 10^{41}$	
AI(OH) ₄ ⁻	$3 imes 10^{33}$	$\mathrm{HgCl_4}^{2-}$	1.1×10^{16}	
CdBr ₄ ²	$5.5 imes 10^3$	Hgl4 ²⁻	$2 imes 10^{30}$	
Cdl4 ²⁻	$2 imes 10^{6}$	$Ni(NH_3)_6^{2+}$	$2.0 imes 10^8$	
$Cd(CN)_4^{2-}$	$3 imes 10^{18}$	Pb(OH)3	$8 imes 10^{13}$	
$Co(NH_3)_6^{3+}$	$2.3 imes10^{33}$	Sn(OH) ₃	$3 imes 10^{25}$	
$Co(OH)_4^{2-}$	$5 imes 10^9$	$Zn(CN)_4^{2-}$	$2.1 imes 10^{19}$	
Co(SCN)_4^{2-}	1×10^3	$Zn(NH_3)_4^{2+}$	$2.8 imes 10^9$	
$Cr(OH)_4^-$	$8.0 imes10^{29}$	$Zn(OH)_4^{2-}$	2×10^{15}	
Cu(CN)4 ²⁻	$1.0 imes10^{25}$			

Example 16.15 Complex Ion Equilibria

Continued

$$Cu^{2+}(aq) + 4 \text{ NH}_{3}(aq) \iff Cu(\text{NH}_{3})_{4}^{2+}(aq)$$

$$K_{f} = 1.7 \times 10^{13}$$

$$[Cu^{2+}]_{\text{initial}} = \frac{0.200 \text{ L} \times \frac{1.5 \times 10^{-3} \text{ mol}}{\text{L}}}{0.200 \text{ L} + 0.250 \text{ L}} = 6.7 \times 10^{-4} \text{ M}$$

$$[\text{NH}_{3}]_{\text{initial}} = \frac{0.250 \text{ L} \times \frac{0.20 \text{ mol}}{1 \text{ L}}}{0.200 \text{ L} + 0.250 \text{ L}} = 0.11 \text{ M}$$

Construct an ICE table for the reaction and write down the initial concentrations of each species.

 $\operatorname{Cu}^{2+}(aq) + 4 \operatorname{NH}_3(aq) \Longrightarrow \operatorname{Cu}(\operatorname{NH}_3)_4^{2+}(aq)$

	[Cu ²⁺]	[NH ₃]	$[Cu(NH_3)_4^{2+}]$
Initial	6.7×10^{-4}	0.11	0.0
Change			
Equil			

Example 16.15 Complex Ion Equilibria

Continued

Since the equilibrium constant is large and the concentration of ammonia is much larger than the concentration of Cu^{2+} , you can assume that the reaction will be driven to the right so that most of the Cu^{2+} is consumed. Unlike previous ICE tables, where you let *x* represent the change in concentration in going to equilibrium, here you let *x* represent the small amount of Cu^{2+} that remains when equilibrium is reached.

	cu (uq) i i i i		(04)
	[Cu ²⁺]	[NH ₃]	$[Cu(NH_3)_4^{2+}]$
Initial	6.7×10^{-4}	0.11	0.0
Change	$\approx (-6.7 \times 10^{-4})$	$\approx 4(-6.7 \times 10^{-4})$	$\approx (+6.7 \times 10^{-4})$
Equil	x	0.11	6.7×10^{-4}

 $Cu^{2+}(aa) + 4 \text{ NH}_2(aa) \Longrightarrow Cu(\text{NH}_2)^{2+}(aa)$

Substitute the expressions for the equilibrium concentrations into the expression for K_f and solve for x.

$$K_{\rm f} = \frac{[{\rm Cu}({\rm NH}_3)_4^{2^+}]}{[{\rm Cu}^{2^+}][{\rm NH}_3]^4}$$
$$= \frac{6.7 \times 10^{-4}}{x(0.11)^4}$$
$$x = \frac{6.7 \times 10^{-4}}{K_{\rm f}(0.11)^4}$$
$$= \frac{6.7 \times 10^{-4}}{1.7 \times 10^{13}(0.11)^4}$$
$$= 2.7 \times 10^{-13}$$