Ch16 – Aqueous Ionic Equilibrium Solubility and Complex Ion Equilibria

Lead (II) iodide precipitates when potassium iodide is mixed with lead (II) nitrate

Modified Dr. Cheng-Yu Lai

Solubility-product constant K_{sp}

The Equilibrium Constant for the equilibrium established between a solid solute and its ion in a saturated solutiion.

 $BaSO_4(s)$ \rightarrow $Ba^{2+}(aq) + SO_4^{2-}(aq)$

• When writing the equilibrium constant expression for the dissolution of BaSO₄, we remember that the *concentration of a solid is constant*.

The equilibrium expression is therefore:

 $K = [Ba^{2+}][SO_4^{2-}]/[BaSO_4(s)]$

since *the concentration of a solid is constant*, we could get new K'= k x[BaSO₄(s)]= Ksp

the solubility-product constant.

 $Ksp = [Ba²⁺][SO₄²⁻]$ Ksp, the **solubility-product constant**.

The Solubility Expression

$A_aB_b(s) \leftarrow \rightarrow aA^{b+}(aq) + bB^{a-}(aq)$

$$
Ksp = [A^{b+}]^a [B^{a-}]^b
$$

Example:
$$
Pbl_2(s) \leftarrow \rightarrow Pb^{2+} + 2 l^{-}
$$

Ksp = $[Pb^{2+}] [l^{-}]^2$

*****The greater the ksp the more soluble the solid is in H_2O .

The Solubility Equilibrium Equation And K_{sp}

$$
CaF_2
$$
 (s) \Leftrightarrow Ca²⁺ (aq) + 2 F⁻ (aq)
\n $K_{sp} = [Ca^{2+}][F^2]$
\n $K_{sp} = 5.3 \times 10^{-9}$

As₂S₃ (s)
$$
\Leftrightarrow
$$
 2 As³⁺ (aq) + 3 S²⁻ (aq)
K_{sp} = [As³⁺]²[S²⁻]³

* Remember, solids are not in equilibrium expressions!

Ksp Values for Some Salts at 25C

Solubility and Ksp Three important definitions:

- 1) solubility: quantity of a substance that dissolves to form a saturated solution
- 2) molar solubility: the number of moles of the solute that dissolves to form a liter of saturated solution
- 3) Ksp (solubility product): the equilibrium constant for the equilibrium between an ionic solid and its saturated solution

Example 16.9 Calculating $K_{\rm SD}$ **from Molar Solubility**

The molar solubility of Ag_2SO_4 in pure water is 1.2 \times 10⁻⁵ M. Calculate K_{sp} .

Solution

Begin by writing the reaction by which solid Ag_2SO_4 dissolves into its constituent aqueous ions, then write the corresponding expression for $K_{\rm{sp}}$.

$$
Ag_2SO_4(s) \Longleftrightarrow 2 Ag^+(aq) + SO_4^{2-}(aq)
$$

$$
K_{sp} = [Ag^+]^2[SO_4^{2-}]
$$

Use an ICE table to define $[Ag^+]$ and $[SO_4^{2-}]$ in terms of *S*, the amount of Ag_2SO_4 that dissolves.

 $Ag_2SO_4(s) \rightleftharpoons 2 Ag^+(aq) + SO_4^{2-}(aq)$

Substitute the expressions for $[Ag^+]$ and $[SO_4^2]$ from the previous step into the expression for K_{sp} . Substitute the given value *of the molar solubility for S and calculate K*sp.

$$
K_{\rm sp} = [Ag^{+}]^{2}[SO_{4}^{2-}]
$$

= (2S)²S
= 4S³
= 4(1.2 \times 10^{-5})^{3}
= 6.9 \times 10^{-15}

The **Molar Solubility** is the **molarity** required to **saturate** of fill the solution at any given temperature.

1. The solubility (s) of BaCO₃ is 5.1 x 10⁻⁵ M @ 25⁰ C. Calculate the solubility product or Ksp.

 $BaCO_{3(s)}$ \Rightarrow $Ba^{2+} + CO₃$ ²⁻ s s s $Ksp = [Ba^{2+}][CO_3^{2-}]$ **Ksp = [s][s]** $Ksp = s^2$ $Ksp = (5.1 \times 10^{-5})^2$

Ask for solubility to Ksp
Ksp = 2.6 x 10⁻⁹

Calculating Molar Solubility Calculate the molar solubility of Ag_2SO_4 in one liter of water. Ksp = 1.4×10^{-5} $Ag_2SO_4 \leftrightarrow 2Ag^+ + SO_4^{2-}$ Initial 0 0 Change $+2x$ $+ x$ Equilb 2x x

 $Ksp = [Ag⁺]^{2}[SO₄²⁻] = (2x)²(x) = 1.4 x 10⁻⁵$ $X = 1.5 \times 10^{-2}$ mol Ag_2SO_4 /L (molar solubility)

EXAMPLE 15.5

The Common-Ion Effect and Le Châteliers Principle

Common ion effect: "The solubility of one salt is reduced by the presence of another having a common ion"

Common ion Effect

Common ion: "The ion in a mixture of ionic substances that is common to the formulas of at least two." (PbI2+ NaI)

 $Pbl_2(s) \leftrightarrow Pb^{2+}(aq) + 2I^{-}(aq)$

Ksp of $Pbl_2 = 7.9 \times 10^{-9}$, so the molar solubility is $7.9 \times 10^{-9} = (x)(2x)^2 = 4x^3$ $X = 1.3 \times 10^{-3}$

Thus the solubility of the PbI $_2$ is reduced by the presence of the NaI.

Which is much greater than 7.9×10^{-7} when 0.10 M NaI is in solution (solubility becomes = 7.9 x 10**–7** *M)*

pH and Solubility

- The presence of a common ion **decreases** the solubility.
- Insoluble bases dissolve in acidic solutions
- Insoluble acids dissolve in basic solutions

$$
Mg(OH)_2
$$
 (s) $\frac{1}{2}$ Mg^{2+} (aq) + 2OH⁻ (aq)

$$
K_{sp} = [Mg^{2+}][OH^-]^2 = 1.2 \times 10^{-11}
$$

\n $K_{sp} = (s)(2s)^2 = 4s^3$
\n $4s^3 = 1.2 \times 10^{-11}$
\n $s = 1.4 \times 10^{-4} M$
\n $[OH^-] = 2s = 2.8 \times 10^{-4} M$
\n $POH = 3.55 pH = 10.45$
\n $Decrease solubility of Mg(OH)2$
\n $Meu = 10.45$
\n $Meu = 10.45$ <

Determining Whether Precipitation Occurs

- *Q^s*^p is the ion product reaction quotient and is based on initial conditions of the reaction.
- $Q_{\rm sp}$ can then be compared to $K_{\rm sp}$.
- To predict if a precipitation occurs:
	- Precipitation *should* occur if $Q_{\rm SD} > K_{\rm SD}$.
	- Precipitation *cannot* occur if $Q_{sp} < K_{sp}$.
	- A solution is *just saturated* if $Q_{\rm sp} = K_{\rm sp}$.

Sometimes the concentrations of the ions are not high enough to produce a precipitate!

EXAMPLE 15.10

Write balanced equations to explain why each of the following precipitates dissolves in strong acid. (b) $CaCO₃$ (c) CoS (a) $Al(OH)_3$

SOLUTION

- (a) $Al(OH)_3(s) + 3H^+(aq) \longrightarrow Al^{3+}(aq) + 3H_2O$
- (b) $CaCO₃(s) + 2H⁺(aq) \longrightarrow Ca²⁺(aq) + H₂CO₃(aq)$
- (c) $\cos(s) + 2H^+(aq) \rightarrow \cos^2(aq) + H_2S(aq)$

TABLE 16.5

Separation of Cations into Groups According to Their Precipitation Reactions with Various Reagents

Example -Will a Precipitation Occur?

If 1.00 mg of Na_2CrO_4 is added to 225 ml of 0.00015 M AgNO₃, will a precipitate form? $\text{Ag}_2\text{CrO}_4\text{(s)} \rightarrow 2\text{Ag}^+ + \text{CrO}_4^2$

Determine the initial concentration of ions.

 $Ag⁺ = 1.5 \times 10^{-4} M$

 $\text{CrO}_4^2 = 1.00 \times 10^{-3} \text{ g} / \text{MM} = 6.17 \times 10^{-6} \text{ mol } \text{CrO}_4^2$ $.2251 = 2.74 \times 10^{-5}$ M

Example -Will a Precipitation Occur?

• Compare the initial concentration to the solubility product constant

Initial concentration of ions: $(Ag^+)^2$ (CrO₄²⁻)

 $(1.5 \times 10^{-4})^2 (2.74 \times 10^{-5} \text{ M}) = 6.2 \times 10^{-13}$

 Ag_2 CrO₄ Ksp = 1.1 x 10⁻¹²

• No precipitation will occur because the initial concentration is less than the Ksp.

 $Q < Ksp$

Complex Ions

A *Complex ion* is a charged species composed of:

1. A metallic cation

2. *Ligands* – Lewis bases that have a lone electron pair that can form a covalent bond with an empty orbital belonging to the metallic cation

 $NH₃$, CN⁻, and $H₂O$ are Common Ligands

Coordination Number

 \Box Coordination number refers to the number of ligands attached to the cation

 \Box 2, 4, and 6 are the most common coordination numbers

Complex Ions and Solubility AgCl(s) $\Rightarrow Ag^+ + Cl^-$ K_{sp} = 1.6 x 10⁻¹⁰ $Ag+NH_3 \rightharpoonup Ag(MH_3)^+$ $K_1 = 2.1 \times 10^3$ $Ag(MH_3)^+NH_3 \rightharpoonup Ag(NH_3)_2^+$ $K_2 = 8.2 \times 10^3$ AgCl + 2NH₃ \leftrightarrows Ag(NH₃)₂ + + Cl⁻ $K = K_{sp} \cdot K_1 \cdot K_2$ 2 $\left[\text{NH}_3 \right]^2$ 3 178 (IVII₃)₂ JLCI $K = 2.8 \times 10^{-3} = \frac{[Ag(NH_3)^+_2][Cl^-]}{52.57 \times 10^{-2}}$ $=2.8 \times 10^{-3} = \frac{148}{}^{(1)}$ **= formation constant**

Formation Constants

Formation Constants for Complex Ions

• The very soluble silver complex ion removes Ag+ from the solution and shifts the equilibrium to the right increasing the solubility of AgCl.

$$
AgBr + 2NH3 \iff Ag(NH3)2+ + Br-
$$

K = 8.0 x 10⁻⁶ \iff = $[Ag(NH3)2+][Br-]$
 $[NH3]$

 $K = k_{form} x k_{sp} = (1.6 \times 10^7)(5.0 \times 10^{-13})$ $= 8.0 \times 10^{-6}$

Example

• How many moles of AgBr can dissolve in 1 L of $1.0 M NH₃$?

Example 16.15 Complex Ion Equilibria

You mix a 200.0 mL sample of a solution that is 1.5×10^{-3} M in Cu(NO₃)₂ with a 250.0 mL sample of a solution that is 0.20 M in NH₃. After the solution reaches equilibrium, what concentration of $Cu^{2+}(aq)$ remains?

Solution

Write the balanced equation for the complex ion equilibrium that occurs and look up the value of K_f in Table 16.3. Since this is an equilibrium problem, you have to create an ICE table, which requires the initial concentrations of Cu^{2+} and NH₃. Calculate those concentrations from the given values.

Example 16.15 Complex Ion Equilibria

Continued

$$
Cu^{2+}(aq) + 4 NH_3(aq) \Longleftrightarrow Cu(NH_3)_4^{2+}(aq)
$$

\n
$$
K_f = 1.7 \times 10^{13}
$$

\n
$$
0.200 L \times \frac{1.5 \times 10^{-3} \text{mol}}{L}
$$

\n
$$
[Cu^{2+}]_{initial} = \frac{0.200 L + 0.250 L}{0.200 L + 0.250 L} = 6.7 \times 10^{-4} M
$$

\n
$$
[NH_3]_{initial} = \frac{0.250 L \times \frac{0.20 \text{ mol}}{1 L}}{0.200 L + 0.250 L} = 0.11 M
$$

Construct an ICE table for the reaction and write down the initial concentrations of each species.

 $Cu^{2+}(aq) + 4 NH₃(aq) \rightleftharpoons Cu(NH₃)₄²⁺(aq)$

Example 16.15 Complex Ion Equilibria

Continued

Since the equilibrium constant is large and the concentration of ammonia is much larger than the concentration of Cu^{2+} , you can assume that the reaction will be driven to the right so that most of the Cu^{2+} is consumed. Unlike previous ICE tables, where you let *x* represent the change in concentration in going to equilibrium, here you let *x* represent the small amount of Cu^{2+} that remains when equilibrium is reached.

Substitute the expressions for the equilibrium concentrations into the expression for K_f and solve for x .

$$
K_{\rm f} = \frac{[{\rm Cu(NH_3)_4}^{2+}]}{[{\rm Cu^2}^+][{\rm NH_3}]^4}
$$

= $\frac{6.7 \times 10^{-4}}{x(0.11)^4}$

$$
x = \frac{6.7 \times 10^{-4}}{K_{\rm f}(0.11)^4}
$$

= $\frac{6.7 \times 10^{-4}}{1.7 \times 10^{13}(0.11)^4}$
= 2.7 × 10⁻¹³