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Outlook

1. Photothermal effects: thermal lens 
and thermal mirror.

2. Sensitivity of the photothermal 
methods.

3. Photothermal characterization of 
materials.

4. Photothermal spectroscopy – a new 
kind of spectroscopy



Photothermal are those effects that 
occur in matter due to the generation 
of heat that follows the absorption of 
energy from electromagnetic waves.



Photoelastic – changes in density due to 
temperature

Photorefractive – change of the 
refraction index due to temperature
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There are two major characteristics of 
the photothermal effects:

• Universality
• Sensitivity 



In any interaction of light and 
matter there is always a release 
of heat





Consider one absorbing atom contained in 1 L 
of water

h

Consider also that a beam of light illuminates 
the sample continuously. The atom will absorb 
one photon and will release the energy of this 
photon toward the surrounding water 
molecules (heating) in 10-10- 10-13 s.



Thermal diffusion will remove the 
generated heat. However, this effect is slow. 
It will take between tens of ms to  seconds 
to equilibrate the temperatures. During this 
time the atom will accumulate the energy of  
108-1013 photons. This can raise the 
temperature an average of 10-3 oC.



Photothermal method has a phase 
character. The signal is in most of the 
cases proportional to the change of 
phase
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S. E. Bialkowski. “Photothermal Spectroscopy Methods for
Chemical Analysis”. New York: Wiley, 1996.

Photothermal Effects



Thermal lens

Focused 
beam



Photothermal Mirror Effect



Thermal lens act like a phase plate
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The change in temperature T is proportional to 
absorption 



To calculate the induced phase we 
calculate first the  distribution of 
temperature generated thanks to the 
absorption of a Gaussian beam in 
the sample. 



Excitation Gaussian Beam Intensity



Gaussian Beam Amplitude
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For a given sample’s position z  and for 
continuous excitation (CW) the intensity of 
the excitation beam is 
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This function has axial symmetry. It is 
convenient to solve the Laplace equation in 
cylindrical coordinates.

where Po is the total light power



Thermal diffusivity equation –Laplace 
Equation

We write the Laplace equation considering 
axial symmetry

D thermal diffusivity coefficient
 absorption coefficient

pC heat capacity
 density
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In cylindrical coordinates with axial 
symmetry 
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We will also neglect the dependence on 
z (thin lens approximation)



The solution of this equation was first 
obtained by Whinnery in 1973 (add ref 
here)
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Io is the modified Bessel function of 
zeroth order



Using the table integral 
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For water  using a 30 mW of 532 nm light

Field of Temperatures generated by the absorption of a beam of light 



Refraction index depends on temperature
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For most of the solvents first order is enough. For 
example for ethanol
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Thermal lens works as a phase plate
(thin lens approximation)
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The solid samples the thermoelastic 
effects add an additional term

)(2)( rTn
T
nLr T

p








 



 




Where T is the linear thermo-elastic 
coefficient



CW excitaion
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The phase difference with respect to the center of the beam 
is
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Using the results obtained for the temperature

Mode matching coefficient



D

Aperture
Sample

Focusing 
lens

Single beam photothermal lens (PTL) experiment



Pump-probe experiment (m>1)

Probe focusing 
lens

Beamsplitter

sample

Aperture

Detector

Pump filter

Pump focusing lens

ap z, ab d
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Advantages of the pump-probe experiment 

1.Higher sensitivity
2.Time dependence experiments possible
3.Spectroscopy possible by using tunable 
pump sources.
4.Detection technology in the visible. No 
need of UV or IR detectors.
5.Different experimental configurations 
possible.  
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Pump-probe optimized mode-mismatched 
experiment (m>>1)



We define the PTL signal as
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where z is the sample position, b is the aperture 
radius. 



For the sake of simplicity we can consider 
the radius of the aperture small (b→0). 
Then the signal can be calculated as
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Plane of the sample Detection plane

We suppose r, r’ << (d-z)
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We calculate the probe amplitude at the far 
field using the Fresnel approximation



Using a Fresnel diffraction approximation we obtain*
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zop is the Rayleigh range of the probe field, zp is the 
probe beam waist position, d is the detector position 

* Shen J, LoweRD, Snook RD (1992) Chem Phys165: 385-396. DOI:10.1016/0301-
0104(92)87053-C.



For small phases we can also obtain*
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* Marcano A, Loper C, Melikechi N (2002) Pump probe mode mismatched Z-
scan, J OptSoc Am B 19: 119-124.
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The TL signals were calculated using the following parameters: 
o=0.01, p=632 nm, e=532 nm, zop=0.1 cm, ze=0.1 cm, d=200 
cm, D=0.891 10-3 cm2/s and different time values as indicated.
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o=0.01, p=632 nm, e=532 nm, zp=100 cm, ze=0.1 cm, L=200 
cm, ae=0 and D=0.891 10-3 cm2/s and different time values as 
indicated

Optimized mode mis-match experiment



Mode-mismatched scheme



Probe transmission through the aperture
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Transmitted through the aperture probe light (632 nm) 
using 250 mW of 532 nm excitation beam of light . The 
sample is a 2-mm column of water



Experimental PTL signal

PTL signal calculated using the data of previous slide. The 
solid line is the theoretical fitting of the data.
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PTL signal as a function of time from the distilled water sample (a) and BK7
optical glass slab (b). The doted line is the pump field time dependence. The
signal-to-noise ratio for the PTL is 10 and 75000 for BK7 glass and water,
respectively.
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Marcano A. , C. Loper and N. Melikechi, Appl. Phys. Lett., 78, 3415-3417 (2001).
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PTL signal from water  for two different chopping 
frequencies : 4 y 7 Hz. 
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a- PTL signal as a function of time for samples (water with latex microspheres) 
with turbidities of 0, 8.6 and 15 cm-1 obtained using 80 mW of 532 nm CW light 
from the DPSS Nd-YAG laser,b- Normalized PTL signal for T=0 (black) and 
T=15 cm-1 (light grey)  over the stationary values showing the different signal-to-
noise ratios. 
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The signal can be detected in highly turbid 
samples

Marcano A., Isaac Basaldua, Aaron Villette, Raymond Edziah, Jinjie Liu, Omar
Ziane, and Noureddine Melikechi, “Photothermal lens spectrometry
measurements in highly turbid media”, Appl. Spectros. 67 (9), 1013-1018, 2013
(DOI: 10.1366/12-06970).



Photothermal Mirror Method
This method involves the detection of the distortion of 
a probe beam whose reflection profile is affected by 
the photo-elastic deformation of a polished material 
surface induced by the absorption of a focused pump 
field

Pump beam

Reflected
Distorted Beam

Photothermal Micromirror



The theoretical model used to explain the PTM method 
is based on the simultaneous resolution of the thermo-
elastic equation for the surface deformations and the 
heat conduction equation. 
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where  is the Poisson ratio, T is the thermo-elastic
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Scheme of the PTM experiment



•L. Malacarne, F. Sato, P. R. B. Pedreira, A. C. Bello, R. S. Mendes, M. L.
Baesso, N. G. C. Astrath and J. Shen, “Nanoscale surface displacement
detection in high absorbing solids by time-resolved thermal mirror”, Appl.
Phys. Lett.92(13), 131903/3 (2008). DOI: 10.1063/1.2905261.
•F. Sato, L. C. Malacarne, P. R. B. Pedreira, M. P. Belancon, R. S. Mendes, M.
L. Baesso, N. G. Astrath and J. Shen, “Time-resolved thermal mirror method:
A theoretical study”, J. Appl. Phys.104(5), 053520/9 (2008). DOI:
10.1063/1.2975997.
•L. C. Malacarne, N. G. C. Astrath, G. V.B.Lukasievicz, E. K. Lenzi, M. S.
Baesso and S. Bialkowski, “Time-resolved thermal lens and thermal mirror
spectroscopy with sample-fluid heat coupling: A complete model for material
characterization’, Appl. Spectros.65(1), 99-104 (2011). DOI: 10.1366/10-06096.
•V. S. Zanuto, L. S. Herculano, M. S. Baesso, G.V.B. Lukazievicz, C. Jacinto,
L. C. Malacarne and N.G.C. Astrath, “Thermal mirror spectrometry: an
experimental investigation of optical glasses”, Opt. Mat.35(5), 1129–1133
(2013).DOI: 10.1016/j.optmat.2013.01.003.
•N. G. C. Astrath, L. C. Malacarne, V. S. Zanuto, M. P. Belancon, R. S.
Mendes, M. L. Baesso and C. Jacinto, “Finite size effect on the surface
deformation thermal mirror method”, J. Opt. Soc. Am. B28(7), 1735-1739
(2011). DOI:10.1364/JOSAB.28.001735.

References for PTM theory 
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ctt / arg /;

Erf(x) is the error function and Erfc(x) is the 
complementary error function.

For opaque materials

A. Marcano, G. Gwanmesia, M. King and D. Caballero, Opt. Eng., 53(12), 127101 
(2014). DOI:10.1117/1.OE.53.12.127101.
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Diffraction theory provides the value of the 
field amplitude of the center of the probe 
beam at the detection plane in a similar way 
it does for the PTL case
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PTM signal as a function of PTM phase 
amplitude
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Conclusions

PTL and PTM are versatile and sensitive 
technique to determine the absorption and 
photothermal properties of matters.

The use of pump-probe configuration 
allows the implementation of PTL an PTM 
spectroscopy as new method of analysis. 


