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Outlook

Photothermal effects: thermal lens
and thermal mirror.

Sensitivity of the photothermal
methods.

Photothermal characterization of
materials.

Photothermal spectroscopy — a new
Kind of spectroscopy



Photothermal are those effects that
occur in matter due to the generation
of heat that follows the absorption of
energy from electromagnetic waves.



Photoelastic — changes in density due to
temperature

AV =a; -V - AT

Photorefractive — change of the
refraction index due to temperature

An= AT
oT



There are two major characteristics of
the photothermal effects:

 Universality
* Sensitivity



In any interaction of light and
matter there is always a release
of heat
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Figure 9.17. Jablonski diagram, showing electronic and vibrational energy levels



Consider one absorbing atom contained in 1 pL
of water

|"‘”>'

Consider also that a beam of light illuminates
the sample continuously. The atom will absorb
one photon and will release the energy of this
photon toward the surrounding water
molecules (heating) in 10-10- 10-13 s,




Thermal diffusion will remove the
senerated heat. However, this efftect is slow.
It will take between tens of ms to seconds
to equilibrate the temperatures. During this
time the atom will accumulate the energy of
103-10"° photons. This can raise the
temperature an average of 1073 °C.



Photothermal method has a phase
character. The signal is in most of the
cases proportional to the change of

phase
O=2x - ( on jAT
A\ 0T




Photothermal Effects
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S. E. Bialkowski. “Photothermal Spectroscopy Methods for
Chemical Analysis”. New York: Wiley, 1996.



Thermal lens

Focused ,
beam



Photothermal Mirror Effect
Pump laser

Probe laser




Thermal lens act like a phase plate

E Fel®()
L
27 on
- A =—1I
D(r) = N LAn(r)  An(n)=—-T(")

The change in temperature T is proportional to
absorption o



To calculate the induced phase we
calculate first the distribution of
temperature generated thanks to the
absorption of a Gaussian beam in
the sample.



Excitation Gaussian Beam Intensity




Gaussian Beam Amplitude

E(z,r,t)= a(EZO)(/t; -exp

r? i-K-r?

_az(z)_Z-R(z)_i.
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sample’s position
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For a given sample’s position z and for
continuous excitation (CW) the intensity of
the excitation beam is

_ -
W (r,t) = ZP‘; -exp —ZLZ
7a a

where P, is the total light power

This function has axial symmetry. It is
convenient to solve the Laplace equation in
cylindrical coordinates.



Thermal diffusivity equation —Laplace
Equation

We write the Laplace equation considering
axial symmetry

ot C,-p

D thermal diffusivity coefficient

@  absorption coefficient
C, heat capacity

P density



In cylindrical coordinates with axial
symmetry

1o0( 0) 0
V= r F—
ror\ or) oz
We will also neglect the dependence on
Z (thin lens approximation)




The solution of this equation was first
obtained by Whinnery in 1973 (add ref
here)

T(r,t)=LﬁW(§,t)-G(r,g,t,r)-g-dg-dr
pIOOO
1, (ré12D(t-7)) r? 4 &2
Gret)= 2D(t—7) eXp( 4D(t—r)]

|, is the modified Bessel function of
zeroth order



Using the table integral
exp(b2 | 4 pz)
2p°

[1,(02)-expl- p2e?)-dé -
We obtain

1/(1+2t/t, )

T(r,t)=T, j(l/n)-exp(—Zrzn/az)-dn
1

where T =oP /47 t,=a’/4D

and xis the thermal conductivity coefficient
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Refraction index depends on temperature

RORCATN AR

oT oT?

For most of the solvents first order is enough. For
example for ethanol

n(T)=1.3+4-10"°C*-AT



Thermal lens works as a phase plate
(thin lens approximation)

T
E 17| Eexp(-iAd(T))
AD(F)
27T on
AD(F)=="=-L-— T(F
(M="—L—T()

P



The solid samples the thermoelastic
effects add an additional term

A@(F)zi—ﬂ-(L

P

| on
oT

| aTnj-T(F)

Where o is the linear thermo-elastic
coefficient



CW excitaion

The phase difference with respect to the center of the beam
is

o(r,z,t) = (2n/2, [n(r,2,1)-n(0,z,1)]
Using the results obtained for the temperature

L-exp(-2m(2)g7)]

T

1

d(g,2,t)=-®, |

1/(1+2t /e (2))

where

m(z) = af, (2)/ a’ (Z) Mode matching coefficient

®, = Pol(dn/dT )/(2x4,)



Single beam photothermal lens (PTL) experiment

V Sa;nple

Focusing Aperture
lens



Pump-probe experiment (m>1)

Pump focusing lens
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Advantages of the pump-probe experiment

1.Higher sensitivity

2. Time dependence experiments possible
3.Spectroscopy possible by using tunable
pump sources.

4.Detection technology in the visible. No
need of UV or IR detectors.

S.Different experimental configurations
possible.



Pump-probe optimized mode-mismatched
experiment (m>>1)
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We define the PTL signal as

W (t,z,®)-W,(z,1,0)
W (z,t,0)

S(z,t) =

W (z,1,®) = _T‘Ep(z,t, r,CI)‘2 - 27rdr
0

where z is the sample position, b is the aperture
radius.



For the sake of simplicity we can consider
the radius of the aperture small (b—0).
Then the signal can be calculated as

E,(2,t0,A0) —|E,(2,t,00)

S(z,t) = >
E,(2,1,0,0)




We calculate the probe amplitude at the far
field using the Fresnel approximation

Plane of the sample Detection plane
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y

We suppose I, 1’ << (d-z)



Using a Fresnel diffraction approximation we obtain®
E_(2,1,0,0) = j exp(—(L+iV)g —id(g,t))dg
0

V=z1lz,+2,[(z,/2,) +1]/d

Z,p, 18 the Rayleigh range of the probe field, z, is the
probe beam waist position, d is the detector position

1

®(g,z,t) =—D, J‘ [1—exp(—2m(z)gr)]dT

r

1(1+2t /e (2))

* Shen J, LoweRD, Snook RD (1992) Chem Phys165: 385-396. DOI:10.1016/0301-
0104(92)87053-C.



For small phases we can also obtain*

- )

AmV1i/t,

S(z,t) =P, tan™ | |
20=2, <\V2+[1+2m]2+{1+2m+V2J2t/tC)

®, =P,al (dn/dT)/(xk,)
m(z) =a,(z)/a*(z)

t (z)=a’(z)/4D

* Marcano A, Loper C, Melikechi N (2002) Pump probe mode mismatched Z-
scan, J OptSoc Am B 19: 119-124.
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Optimized mode mis-match experiment
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Mode-mismatched scheme
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PTL signal as a function of time from the distilled water sample (a) and BK7
optical glass slab (b). The doted line is the pump field time dependence. The
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respectively.



Z-scan signal for the distilled water sample
(a) and the BK7 optical glass slab (b).
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PTL signal is nearly scattering free
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a- PTL signal as a function of time for samples (water with latex microspheres)
with turbidities of 0, 8.6 and 15 cm™! obtained using 80 mW of 532 nm CW light
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noise ratios.
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The signal can be detected in highly turbid

samples
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(DOI: 10.1366/12-06970).



Photothermal Mirror Method

This method involves the detection of the distortion of
a probe beam whose reflection profile is affected by
the photo-elastic deformation of a polished material

surface induced by the absorption of a focused pump
field

Pump beam

Reflected
‘ ’ ’ Distorted Beam

Photothermal Micromirror




The theoretical model used to explain the PTM method
is based on the simultaneous resolution of the thermo-
elastic equation for the surface deformations and the
heat conduction equation.

91 _pyer -4
ot C.p

1-2v)V20i+V-(V-0)=200+v)a, VT

where vis the Poisson ratio, ¢ is the thermo-elastic



Boundary conditions

T (00,2,t) =0
Normal stress
= GZZ‘ =

Ol
e z=0 components

z2=0

Initial condition T (r,Z,0)=0

The phase difference will be

AD = i—” (u,(r,0,t)—u, (0.0,1))]

p



Scheme of the PTM experiment

Pump
beam
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For opaque materials

AD(9,0) =, | exp(-n?18)f (7,03, (/am i

f(n,7)= (UT)ErfCiéj — Z\Eexp(_ %) il . Erf [77\/7]

where

T =t/t, g=r/a

\9 o

Erf(x) is the error function and Erfc(x) is the
complementary error function.

A. Marcano, G. Gwanmesia, M. King and D. Caballero, Opt. Eng., 53(12), 127101
(2014). DOI:10.1117/1.0E.53.12.127101.



O, =-Pyat (1+v)(ﬂup/()_1

w IS thermal quantum yield
x IS the thermal conductivity
P is the pump power

a2

L= PTM time build-up
4D

{




Diffraction theory provides the value of the
field amplitude of the center of the probe
beam at the detection plane in a similar way
It does for the PTL case

E (T, @)= ]Oexp(—(1+ 1IV)g —1d(g,t))dg

\Ep(t,Acp)\2 —\Ep(t,O)\2

Sprw (1) = >
2 E,(t.0)




PTM Signal
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PTM mode-mismatch set-up

()

—‘ '- A
\ )
Ampl. ‘\‘ ,:'
\ Y )
[><7 bL
|
|
|
|
Osc. | -
® \’¢’
M;
SG

Pump laser --—--/

J3Se[ 3qoaJ

\




Normalized PTM Signal
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Normalized PTM Signal
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Stationary value versus PTM phase
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Conclusions

PTL and PTM are versatile and sensitive
technique to determine the absorption and
photothermal properties of matters.

The use of pump-probe configuration
allows the implementation of PTL an PTM
spectroscopy as new method of analysis.



